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Abstract 

Advanced machine learning models applied to large-scale genomics datasets hold the           
promise to be major drivers for genome science. Once trained, such models can serve              
as a tool to probe the relationships between data modalities, including the effect of              
genetic variants on phenotype. However, lack of standardization and limited          
accessibility of trained models have hampered their impact in practice. To address            
this, we present Kipoi, a collaborative initiative to define standards and to foster reuse              
of trained models in genomics. Already, the Kipoi repository contains over 2,000            
trained models that cover canonical prediction tasks in transcriptional and          
post-transcriptional gene regulation. The Kipoi model standard grants automated         
software installation and provides unified interfaces to apply and interpret models. We            
illustrate Kipoi through canonical use cases, including model benchmarking, transfer          
learning, variant effect prediction, and building new models from existing ones. By            
providing a unified framework to archive, share, access, use, and build on models             
developed by the community, Kipoi will foster the dissemination and use of machine             
learning models in genomics. 

Introduction 

Advances in machine learning, coupled with rapidly growing volumes of molecular data, are             

catalyzing progresses in genomics. In particular, predictive machine learning models, which           

are mathematical functions trained to map input data to output values, find widespread             

usage including variant calling from whole genome sequencing data1,2, predicting CRISPR           
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guide activity3,4, and predicting molecular phenotypes from the DNA sequence, including           

transcription factor binding, chromatin accessibility and splicing efficiency5,6,7,8,9,10. Once         

trained, such models hold the promise to allow for probing regulatory dependencies in silico,              

which, besides other applications, enables interpreting functional variation in personal          

genomes and rationalizes the design of synthetic genes.  

 

However, despite the pivotal importance of predictive models in genomics, it is surprisingly             

difficult to share and exchange models effectively. In particular, there is no established             

standard for sharing trained models, in contrast to bioinformatics software and workflows,            

which are commonly shared through general-purpose community software platforms such as           

the highly successful Bioconductor project11, or to genomic raw data, which can be shared              

via data repositories such as GEO12, ArrayExpress13 and the European Nucleotide Archive14.            

Instead, trained genomics models are made available through scattered channels, including           

code repositories, supplementary material of articles and author-maintained web pages. The           

lack of a standardized framework for sharing trained models in genomics hampers their             

effective use, including their application to new data, and their use as building blocks to               

solve more complex tasks.  

 

Repositories of trained models have helped to overcome these challenges in other fields.             

For example, model repositories in computer vision and natural language processing15–17 are            

routinely used for benchmarking and as a starting point to rapidly develop new models. A               

model repository for genomics requires additional developments in order to cover a wide             

range of data types of diverse genomics technologies, each of which requires specific data              

pre-processing strategies. A second challenge is the heterogeneity of machine learning           

frameworks that are currently used in the field, including Keras18, Tensorflow19, PyTorch20,            

and custom model code. Additionally, applications in genomics pose requirements on the            

interpretability of models, for example to understand changes in phenotype for different DNA             

sequence inputs. Finally, a repository of trained models for genomics needs to be easy to               

use and deliver robust and well-documented software to enable application by the many             

practitioners not expert in machine learning. 
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Results 

 

Figure 1 | Overview of Kipoi. From left to right: At its core, Kipoi defines a programmatic standard for                   
data-loaders and predictive models. Data-loaders translate genomics data types into numeric           
representation that can be used by machine learning models. Kipoi models can be implemented using               
a broad range of machine learning frameworks. The Kipoi repository allows community users to store               
and retrieve trained models together with associated data-loaders. Kipoi models are automatically            
versioned, nightly tested and systematically documented with examples for their use. Kipoi models             
can be accessed through unified interfaces using python, R, and command line to install models and                
all required software dependencies. Kipoi streamlines the usage of trained models to make             
predictions on new data, to score variants stored in standard personal genome file format, and to                
assess the effect of variation in the input to model predictions (feature importance score). Moreover,               
Kipoi models can be adapted to new tasks by retraining or by building new composite models that                 
combine existing ones. Newly defined models can be deposited in the repository. 
 
Here we present Kipoi (Greek for gardens, pronounced “Kípi”), a collaborative initiative to             

foster sharing and re-use of trained models. Already, the Kipoi repository (Fig. 1, middle)              

contains over 2,000 trained models that cover key predictive tasks in genomics, including the              

prediction of chromatin accessibility, transcription factor binding, and alternative splicing from           

DNA sequence. It is accessible via GitHub and the Kipoi website (https://www.kipoi.org),            

which provides model overviews and convenient model search functionalities. One of the            

core innovations of Kipoi include standardized data handling (“data-loaders”) (Fig. 1, left),            

which facilitates standardized data input of genomic data types across a wide range of              

models. Kipoi defines an application programming interface (API) (Fig. 1 right), i.e. a             

standard way for software components to communicate with Kipoi models that allows            

programmers to interchangeably use Kipoi models in their software with minimal coding            

effort. The Kipoi API is available in two of the most popular programing languages in               

bioinformatics, python and R, and from the command line, allowing any bioinformatics            
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pipeline to integrate Kipoi models. In addition to making model predictions using established             

bioinformatics formats, most of the current Kipoi models (78%) can score the impact of              

genetic variants, and thus facilitate their functional interpretation.  

 
To support sustainability of the trained models and facilitate their dissemination, Kipoi builds             

on and interoperates a range of software development technologies and standards. Kipoi’s            

infrastructure is fully open-source: The models and the code of Kipoi itself are stored on               

GitHub, a code repository with issue tracking that facilitates transparent and rapid            

user-developer iterations. Moreover, GitHub tracks and indexes all versions of the code and             

models, hence facilitating the reproduction of a given analysis at any time point in the future                

as required for reproducible science21. Kipoi offers seamless installation of the models and             

their software dependencies independently of the programming language of the model           

(using Conda and pip package managers hence leveraging the Bioconda distribution22),           

addressing a major hurdle preventing the widespread sharing of trained machine learning            

models across the bioinformatics community. Moreover, nightly tests on all models are            

performed using a continuous integration service (CircleCi) to ensure model executability on            

test data at all times. Here, we illustrate usage of Kipoi through realistic use cases and make                 

the code available for each of them. 
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Benchmarking of alternative models predicting transcription factor 

binding

 

Figure 2 | Applying and benchmarking alternative Kipoi models for transcription factor binding             
prediction. (a) Five models for predicting transcription factor binding that are based on alternative              
modeling paradigms: i) predefined position weight matrices contained in the HOCOMOCO database23;            
ii) lsgkm-SVM24, a support vector machine classifier; iii) the convolutional neural network DeepBind5;             
iv) the multi-task convolutional neural network DeepSEA; v) FactorNet, a multimodal deep neural             
network with convolutional and recurrent layers that further integrates chromatin accessibility profile            
and genomic annotation features. Models differ by i) the size of genomic input sequence, where               
DeepSEA6 and FactorNET7 consider ~1 kb sequence inputs, whereas other models are based on              
~100 bp, and ii) parametrization complexity with the total size of model parameters ranging from 16kB                
(pwm_HOCOMOCO) to 200 Mb (DeepSEA). (b) Performance of the models in a for predicting              
ChIP-seq peaks of four transcription factors on held-out data (chromosome 8), quantified using the              
area under the precision-recall curve. More complex models yield more accurate predictions than             
basic models which are commonly used. (c) Example access to Kipoi models via the command line                
interface to install required software dependencies, download the model, extract and pre-process the             
data, and write predictions to a new file. Results as shown in b can be obtained for all Kipoi models                    
using this generic command. Placeholder <Model> can be any of the models listed in a. 
 
Practitioners are often faced with multiple predictive models for a particular task. Choosing             

the most appropriate model often requires a customized benchmark as the original            

publications describing these models typically use different datasets and provide setups           
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favoring the published model. Access to a wide range of models through a common API               

facilitates such systematic comparisons. To illustrate this use case, we benchmarked five            

commonly used models for predicting genomic binding sites of transcription factors (Fig. 2a).             

These models span different modeling paradigms, including methods based on classical           

position weight matrices (PWM), gapped k-mer support vector machines (lsgkm-SVM24) and           

deep learning (DeepBind5, DeepSEA6 and FactorNet7). The models were assessed for           

distinguishing bound from unbound regions, where bound regions were defined as           

high-confidence binding events in chromatin immunoprecipitation sequencing (ChIP-seq)        

experiments of four transcription factors in different cell lines: CEBPB in HeLa-S3, JUND in              

HepG2, MAFK in K562, and NANOG in H1-hESC (Methods). The Kipoi implementations for             

all models except lsgkm-SVM were derived from implementations provided by the respective            

publications and were hence trained by the authors. The performance was assessed on             

chromosome 8 which was not used to train any of the considered models.  

 
Position weight matrices generally performed poorly across all transcription factors (Fig. 2b),            

likely due to their inability to account for additional sequence features, such as motifs of               

other cooperating and competing transcription factors. More complex models (e.g.          

DeepSEA and FactorNet) consistently outperformed simpler ones (e.g. DeepBind and          

lsgkm-SVM). FactorNet yielded the most accurate predictions across all transcription factors,           

highlighting the importance of explicitly integrating target cell-type specific chromatin          

accessibility profiles with DNA sequence for predicting in vivo transcription factor binding            

(Fig. 2b). Consistent with this, we also observed that DeepSEA and FactorNet perform             

similarly when model evaluation is restricted to bound and unbound regions that strictly             

overlap accessible chromatin regions (Supp. Fig. 1, Methods). 

 

In this example, Kipoi turned an otherwise cumbersome task into executing three simple             

commands (Fig 2c). The considered models are implemented using different software           

frameworks (Fig 2a), require different input file formats and return predictions in different             

formats. Additionally, installing the appropriate software dependencies for each model is           

difficult and time consuming without Kipoi.  
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Improving predictive models of chromatin accessibility using transfer 

learning 

 
Figure 3: Adapting existing models to new tasks (transfer learning). (a) Architecture of             
alternative models for predicting chromatin accessibility from DNA sequence. Model parameters are            
either randomly initialized (left) or transferred from an existing neural network pre-trained on 421 other               
biosamples (cell lines or tissues, right). (b) Prediction accuracy measured using the area under the                
precision-recall curve, comparing randomly initialized (light blue) versus pre-trained (dark blue)           
models. Shown is the performance on held-out test data (chromosomes 1, 8 and 21) for 10                
biosamples that were not used during pre-training. (c) Training curves, showing the area under the               
precision-recall curve on the validation data (chromosome 9) as a function of the training epoch. The                
dashed vertical line denotes the training epoch at which the model training is completed. Pre-trained               
models require fewer training epochs than randomly initialized models and they achieve more             
accurate predictions. 
 

Training new models can be time consuming and require large training datasets. It can be               

facilitated by transfer learning, i.e. by reusing models trained on one prediction task to              

initialize a new model for a different but related task25. Transfer learning typically enables              

more rapid training, requires less data to train and improves the predictive performance             

compared to models trained from scratch26. One class of predictive models well suited to              

transfer learning are deep neural networks. Deep neural networks consist of successive            

layers which transform input data into increasingly abstract representations. Most of the            

low-level abstractions, for instance edge detection for images or transcription factor motifs in             
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genomics, turn out to be common to multiple prediction tasks. Hence, the training on a               

different task can be focused on the most abstract layers. Transfer learning of deep neural               

networks has been successfully used across multiple domains including biological          

imaging27–30, natural language processing31, and genomics32. 

 

Here, we revisited the transfer learning example in genomics32 on a larger dataset of              

chromatin accessibility profiles for 431 biosamples (cell lines or tissues, Methods). We            

trained a genome-wide model predicting chromatin accessibility for 421 biosamples (tasks)           

while holding out 10 biosamples. For the 10 held-out biosamples, we transferred the model              

parameters to a new model and replaced the final layer with a randomly initialized one (Fig.                

3a). One transferred single-task model was trained for each of the 10 held-out biosamples,              

keeping the model parameters of all layers except the last two layers fixed during re-training.               

Models initialized with transferred model parameters yielded improved predictive accuracy          

for all biosamples with 15.2% larger area under the precision-recall curve on average,             

compared to the same model initialized entirely with random parameters (Fig. 3b). In             

addition to improved performance, the training time for transferred models was substantially            

lower. On average, training the randomly initialized model to optimal performance required            

17.3 iterations over the whole training dataset (epochs) (>1 day training time), compared to              

2.8 epochs (~4 hours training time) for transferred models (Fig. 3c). 

 

Kipoi promotes transfer learning in three ways. First, it provides access to a comprehensive              

collection of state-of-the-art models in genomics. Transfer learning works well if the tackled             

task is similar to the original task of the pre-trained model25. Kipoi allows users to quickly                

browse models by name, tag or framework and hence find the model candidate closest to               

their task at hand. Second, each model is easily installable and comes packaged with a               

tested data-loader. Most of the data-loaders can be directly used to re-train models. Third,              

for neural network models, Kipoi offers a command to return and store the activation of a                

desired intermediate layer rather than the final, prediction layer. The transferred model can             

take those activations as input features instead of the original input. Since the intermediate              

layer can serve as a good feature extractor, this procedure can speed up the training               

process by multiple orders of magnitude without reducing performance. For the transfer            

learning example in Fig. 3, model training took only 3 minutes with the pre-computed values               

on a single graphical card (NVIDIA TITAN X). Altogether, leveraging pre-trained models, in             

particular deep models that have been trained on large datasets with a substantial             
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investment in compute time, allow researchers to train more accurate models on smaller             

datasets while saving time and compute costs. 

Predicting the molecular effects of genetic variants using interpretation 

plugins

  

Figure 4: Variant effect prediction and feature importance scores. (a) Schema of variant effect              
prediction using in-silico mutagenesis. Model predictions calculated for the reference allele and the             
alternative allele are contrasted and written into an annotated copy of the input variant call format file                 
(VCF). (b) Kipoi uniformly supports variant effect prediction for models that can make predictions              
anywhere in the genome (top) and also for models that can make predictions only on predefined                
regions such as exon boundaries (bottom). (c) Generic command for variant effect prediction. (d)              
Generic command to compute the importance scores using in-silico mutagenesis (e) Feature            
importance scores visualized as a mutation map (heatmap, blue negative effect, red positive effect)              
for variant rs35703285 and the predicted GATA2 binding difference between alleles for 4 different              
models. The black boxes in the mutation maps highlight the position and the alternative allele of the                 
respective variant. Additionally, stars highlight variants annotated in the human variant database            
ClinVar with red: (likely) pathogenic, green: likely benign, grey: uncertain or conflicting significance,             
other. 
 

One important application of trained models in genomics, with translational relevance in            

human genetics and cancer research, is to predict the effects of genetic variants on              

molecular phenotypes,6,33. Individually, variant effect prediction has been implemented by a           

subset of published sequence-based predictive models such as DeepBind5, DeepSEA6, and           

CpGenie33. In Kipoi this is generalized and implemented as a plugin that allows annotating              
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variants obtained from the variant call format (VCF) files using any DNA sequence based              

model. The variant effect prediction plugin performs in-silico mutagenesis by contrasting           

model predictions for the reference allele and for the alternative allele (Fig. 4a). If the model                

can be applied across the entire genome, such as chromatin accessibility models,            

sequences centered on the queried variants are extracted (top row, Fig. 4b). If instead the               

model can only be applied to regions anchored at specific genomic locations, such as              

splicing models at intron-exons junctions, only sequences extracted from valid regions that            

overlap with the variants of interest are used (bottom row, Fig. 4b). A uniform handling of                

these two scenarios using a single command (Fig. 4c) greatly simplifies their application.             

Altogether, the variant effect prediction plugin allows integrating a broad range of regulatory             

genomics predictive models into personal genome annotation pipelines and is trivially           

extended with newly added models. 

 

To inspect genomic regions containing the variant in higher detail, variant effect predictions             

for all possible single nucleotide variants in the sequence can be computed using a single               

command (Fig. 4d) and visualized as a mutation map (Fig. 4e). This helps to assess the                

predicted impact of the variant of interest in the context of other possible variants in the                

genomic region and may help pinpoint the affected cis-regulatory elements. For example,            

the mutation maps for transcription factor binding sites of GATA2 show that the first four               

models from Fig. 2 agree on the effect of the variant rs35703285. Interestingly, the three               

most complex models (lsgkmSVM, DeepBind, and DeepSEA) predict effects of similar           

strength further away from the core motifs. This reflects that they can model more complex               

regulatory structure than the sole core motif captured by the position weight matrix             

approach. Variant rs35703285 has been classified as pathogenic in the ClinVar dataset and             

is linked to beta Thalassemia (MedGen:C0005283), a disease that reduces synthesis of the             

hemoglobin subunit beta (hemoglobin beta chain) that results in microcytic hypochromic           

anemia34. The mutation map illustrates that similar loss of GATA2 binding can be expected              

from other variants in the region.  

 

In addition to in-silico mutagenesis, which only applies to sequences, Kipoi provides a plugin              

that can evaluate the influence for any type of input on model prediction by implementing               

various feature importance algorithms, including saliency maps35 and DeepLift36. These          

feature importance algorithms offer an additional perspective and are often much faster to             

compute than in-silico mutagenesis. 
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Predicting pathogenic splice variants by combining models 

 
Figure 5: Composite models using Kipoi for improved pathogenic splice variant scoring. (a)             
Illustration of composite modelling for mRNA splicing. A model trained to distinguish pathogenic from              
benign splicing region variants is easily constructed by combining Kipoi models for complementary             
aspects of splicing regulation (MaxEntScan 3’ models acceptor site, MaxEntScan 5’ and HAL model              
donor sites, labranchor models the branchpoint) and phylogenetic conservation. These variant scores            
are combined by logistic regression to predict the variant pathogenicity (orange box). (b) Different              
versions of the ensemble model were trained and evaluated in 10-fold cross-validation for the              
dbscSNV and ClinVar datasets (Methods). The four leftmost models are incrementally added to the              
composite model in chronological order of their publication: the leftmost point only uses information              
from the MaxEntScan/3prime model, while `+conservation (KipoiSplice4)` uses all four models and            
phylogenetic conservation. These performances were compared to a logistic regression model using            
state-of-the-art splicing variant effect predictors (SPIDEX, SPIDEX+conservation, dbscSNV).        
KipoiSplice4 achieves state-of-the-art performance on the dbscSNV dataset and outperforms          
alternative models on ClinVar which contains a broader range of variants (c) Fraction of unscored               
variants for different models in the dbscSNV and ClinVar datasets. 
 

State of the art models performing variant effect prediction frequently combine scores from             

multiple models. The advantage is two-fold. First, combined scores can cover multiple            

biological processes. Second, combined scores are more robust, because they average out            

conflicting predictions of individual models. Combining models or scores can be easily done             

in Kipoi by leveraging the standardization and modularity of models in combination with the              

variant effect prediction plugin introduced above. As a proof-of-concept, we used Kipoi to             

define a pathogenicity score of variants located near splice sites by integrating four             
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predictive models covering complementary aspects of splicing (Fig 5a) into a single            

composite model. 

 

Defect in splicing is one of the most frequent cause of genetic disease (López-Bigas et al.,                

2005). In the first step of splicing, the donor site is attacked by an intronic adenosine to form                  

a branchpoint. In the second step, the acceptor site is cleaved and spliced (i.e. joined) to the                 

3’ end of the donor site. To cover variants possibly affecting splicing through different              

mechanisms, we considered four complementary models trained on different types of data.            

These models were i,ii) 5’ and 3’ MaxEntScan8, a probabilistic model scoring donor and              

acceptor site regions that was trained on splice sites with cDNA support, iii) HAL9, a k-mer                

based linear regression model scoring donor sites that was trained on a massively parallel              

reporter assay in which hundreds of thousands of random sequences probed the donor site              

sequence space9, and iv) Labranchor, a deep-learning model scoring the region upstream of             

the acceptor site for possible branchpoint locations that was trained from experimentally            

mapped branchpoints37.  

 

While MaxEntScan can be easily applied to score genetic variants provided in VCF files              

through ENSEMBL’s variant effect predictor plugin38, HAL and Labranchor do not offer this             

functionality out-of-the-box. Using Kipoi’s API, the variant effect prediction is standardized for            

all these models (Fig. 5a). We built a new Kipoi model, KipoiSplice4, which is a logistic                

regression model based on variant effect predictions of these four Kipoi models and             

phylogenetic conservation scores (Methods, Fig 5a). This combined model was trained on            

two different datasets of splice variants classified either as pathogenic or benign (dbscSNV             

and ClinVar, Methods).  

 

To illustrate the benefit of integrating multiple models, we incrementally added the four             

splicing models in the chronological order of model publication. With an increasing number             

of models, the performance increased in both, dbscSNV and ClinVar datasets (Fig. 5b, four              

left-most methods). Next, we evaluated the model performance against two state-of-the-art           

splicing scores: another integrative approach that predicts pathogenic splicing-affecting         

variants dbscSNV39 and SPIDEX40. For a fair comparison, we furthermore trained a score             

combining SPIDEX and phylogenetic conservation on each dataset, which reached the           

same performance as the dbscSNV model on ClinVar. While the performance of            

KipoiSplice4 is similar to dbscSNV for the dbscSNV dataset, KipoiSplice4 outperforms all            

other methods on the ClinVar dataset. One reason for the better performance of             
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KipoiSplice4 is that it scores more variants (Fig. 5c). Neither SPIDEX nor dbscSNV explicitly              

model the splicing branchpoint, while KipoiSplice4 does so using labranchor. 

 
By wrapping the individual models into a data-loader, we made the ensemble model             

KipoiSplice4 available in Kipoi. KipoiSplice4 can hence be executed on demand to de novo              

predict effects of variants in splice sites. This is not possible with other state-of-the-art              

splicing models which are published as pre-computed databases, such as dbscSNV. While            

SPIDEX offers a web interface to generate variant scores, it can currently only do so for 40                 

variants at a time. Altogether, by wrapping existing splice-models into Kipoi, and thereby             

leveraging the out-of-the-box variant effect prediction, we developed a state-of-the-art model           

for scoring the pathogenicity of splicing variants. Additionally, with new splicing models and             

more extensive training datasets of better quality being published, the ensemble model can             

be easily and transparently improved. 

Discussion 

We have developed a repository and programmatic standard for sharing and re-use of             

trained models in genomics, thereby addressing an unmet need. By providing a unified             

interface to models, automated installation, and nightly tests, Kipoi streamlines the           

application of trained models, overcomes the technical hurdles of their deployment, improves            

their dissemination, and ultimately facilitates reproducible research. The use cases          

presented demonstrate that Kipoi greatly facilitates the execution and comparison of           

alternative models for the same task, standardizes their use to functionally interpret genetic             

variants, and facilitates the development of new models based on existing ones, either by              

means of transfer learning or by model combination.  

 

The dissemination and sharing of trained models has major advantages compared to            

sharing pre-computed predictions or to sharing code for users to train models from scratch.              

In particular, pre-computed predictions cannot be extended to new or different input data.             

Moreover, the generation of extensive sets of pre-computing results for a wide range of              

potentially relevant input values can be prohibitive in terms of compute time and storage.              

For example, storing variant effect predictions is technically impossible even for relatively            

short (<10bp) indels for combinatorial reasons. On the other hand, re-training models from             

scratch is frequently non-trivial, requires access to potentially very large training dataset, and             

can require large computational resources. Trained machine learning models can be           

regarded as functions encoding data distributions41. Hence, it is maybe not surprising that a              
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demand for repositories dedicated to trained models arises in the era of big data, where they                

fill a gap between code repositories and data repositories.  

 

At the core of our contribution is an application programmatic interface (API), a unified way               

for software components to interact with any of these models. APIs provide modularity to              

software design, help to reduce code redundancy and allow developers to focus only on the               

most relevant tasks. We demonstrated the utility of the API, which provides a generic              

approach to carry out variant effect predictions, and to derivefeature importance scores for a              

wide range of models. These examples are important downstream functionalities which are            

not typically provided by software implementations of models as provided by authors, or they              

may be implemented using diverse and inconsistent paradigms and interfaces. We foresee a             

range of future plugins that are of general use for different models. While most of the models                 

in Kipoi currently predict molecular phenotypes from DNA sequence, the design of Kipoi is              

agnostic to input or output data types. Additionally, the API can be used with multiple model                

repositories, both public and private, simultaneously. Hence, the genericity of Kipoi makes it             

attractive for applications beyond the domain of genomics. 

 
While complying to a programmatic standard can constrain contributors and provide some            

initial overhead to adapt legacy software, the long-term community benefits from the            

standardization will outweigh short-term investments. The open software project         

Bioconductor and the data repository GEO are canonical examples of the expected gains.             

These frameworks achieve a suitable compromise between rigidly enforced structure and no            

structure. With this in mind, we have designed Kipoi’s API to rigorously specify specific              

aspects such as providing example files to test model executability, while leaving other             

choices, such as the machine learning modelling framework, opento developers. We           

anticipate that community usage will help to develop good practices and find a reasonable              

balance between standardization and flexibility.  

 

An exciting next step would be to set up open challenges for key predictive tasks in                

genomics with open challenge platforms like DREAM42 or CAGI43, and make the best models              

available in Kipoi. This would simplify and modularize the development of predictive models             

into three steps: (1) designing training and evaluation datasets (challenge organizers), (2)            

training the best model (challenge competitors) and (3) making the model easily available for              

others to use (repository of trained models). Such modularization would lower the entry             

barrier for newcomers as well as machine learning practitioners lacking domain expertise.            
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Moreover, as models and training datasets continue to evolve, such best-in-class models            

could be continuously updated and made immediately available to all. Kipoi provides            

important elements to this end: a standardization for data loading and model execution,             

nightly tests, and a central repository.  

 
A repository of interoperable models opens the possibility of building composite models that             

capture how genetic variation propagates through successive biological processes. Such a           

sequential, modular modeling offers multiple advantages. First, end-to-end fitting of a           

complex trait such as a cellular behavior or the expression level of a gene can be too difficult                  

because the amount of data is too scarce compared to the complexity of the phenomena. In                

contrast, today’s high-throughput technologies focusing on a specific sub-process offer more           

data at higher accuracy. For example, massively parallel reporter assays allow performing            

saturated screens in which nearly the complete combinatorial sequence space can be            

probed for the selected molecular processes. Hence accurate models may be obtained for             

these elementary tasks and serve as building blocks for modeling more complex tasks.             

Second, modularity is a hallmark of biological processes as the same proteins are often              

involved in multiple processes. We therefore anticipate fruitful cross-talks between modelers           

sharing individual components useful for different modeling tasks. Third, such approach           

would lead to models that are interpretable in terms of simpler biological processes as              

opposed to black box predictors. Whether and how predictive models of elementary steps             

can be sequentially combined and fitted together to model multiple higher order biological             

processes of increasing complexity is an exciting research direction. Altogether, we foresee            

Kipoi as a catalyst in the endeavour to model complex phenotypes from genotype. 

Methods 

Kipoi infrastructure 

Model source 

Kipoi’s main model repository (“model source”) is hosted as a git repository at             

https://github.com/kipoi/models. Each folder containing the following files is considered to be           

a single model: 

- model.yaml          - model description in the YAML format 

- model_files/         -  directory with files required by the model (like model weights) 

- model.py              - (optional) model implementation as a python class 
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- example_files/      - directory with small files used to test the model 

- dataloader.py       - data-loader implementation (could be implemented by other 

models) 

- dataloader.yaml   - data-loader description (could be implemented by other models) 

- dataloader_files/  - (optional) directory with files required by the data-loader 

The `model.yaml` and `dataloader.yaml` each specify (i) general information like author           

name, publication link or description, (ii) required software dependencies, (iii) input-output           

data types, and (iv) additional information required by plugins like variant effect prediction.             

`model_files`, `dataloader_files`, `model.py` and `dataloader.py` contain the code and         

parameters necessary to execute the model. `example_files` contains small input files to test             

the execution of model prediction. 

 

Folders whose name ends with `_files` are tracked by Git Large File Storage (LFS,              

https://git-lfs.github.com/). In addition to Kipoi’s default model source, the user can host and             

seamlessly use their own, private or public, model source. Model sources are specified in              

Kipoi’s config file and are treated completely equivalently to the default model source. 

Depositing and testing models 

New models or updates to existing models are submitted as pull requests to the Kipoi model                

repository https://github.com/kipoi/models. For each pull request, the added or updated          

models are automatically tested using the CircleCI continuous integration service.          

Additionally, all models from the master branch of the repository are automatically tested             

every day. For each tested model, a new Conda environment with all the required              

dependencies will get installed, and model prediction will get executed for the example files.              

In order to pass the tests no errors or warnings can be raised, and the arrays returned by                  

both, the data-loader and the model, have to be consistent with the description in their yaml                

files. 

The API 

Kipoi’s API is implemented as a python package supporting python 2.7 and python>=3.5 .              

The package is directly installable from PyPI and Bioconda22. It provides a command line              

interface exposed through the `kipoi` command. Using Kipoi from the R programing            

language is enabled by using the `reticulate` R package. The API provides functionality             

necessary to manage model and data-loader dependencies, it provides generic methods for            
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executing model predictions and gradient calculations (where available). To enable generic           

definition of interfaces Kipoi defines two main classes:  `Model` and `Dataloader`. 

Model 

Model is a class implementing the method `predict_on_batch(x)`. Argument x can be            

a single numpy array, a list of numpy arrays or a dictionary of numpy arrays. In its current                  

version, Kipoi wraps models implemented in Keras, Tensorflow, PyTorch and Scikit-learn.           

For models developed in one of these frameworks, the contributor can directly provide the              

serialized model. A user can also deposit a custom model by implementing the Model class               

and hence make use of arbitrary python code or even command-line calls. For models              

implemented in deep learning frameworks (Keras, Tensorflow, PyTorch), the model class           

additionally provides two methods: `predict_activation_on_batch(x, layer,      
pre_nonlinearity=False)`, which returns the feature activation map of an intermediary          

layer (useful for transfer learning) and `input_grad(x, filter_idx=None,        
avg_func=None, wrt_layer=None, ...)`, which returns the gradient of the input          

with respect to model’s predictions (useful for feature importance scores). Support for            

additional machine learning frameworks can be easily added. 

Data-loader 

The aim of the data-loader is to generate batches of data consumable by the model. It                

encapsulates the loading of data from input files and its pre-processing. The data-loader has              

to return a dictionary with three keys: inputs, targets (optional), metadata (optional). Value of              

the ‘inputs’ key is directly passed on to the model input. ‘targets’ provide labels useful for                

training or benchmarking. ‘metadata’ optionally provide additional information about the data           

samples (like sample identifier or genomic ranges of the extracted genome sequence). 

 

To implement a data-loader, the contributor can either write a python function, generator,             

iterator or a Dataset class (http://kipoi.org/docs/contributing/04_Writing_dataloader.py/).      

Regardless of how the data-loader is implemented, the user will have direct access to the               

following methods: `batch_iter` returning batches of data stored as a dictionary with            

inputs, targets and metadata keys, `batch_train_iter` returning batches of data          

indefinitely as a tuple of inputs and targets (directly useful with the Keras’ fit_generator),              

`batch_predict_iter` returning batches of inputs and `load_all` returning the whole          

dataset. Parallel data-loading is by default enabled for data-loaders written as a `Dataset` by              

using the DataLoader class originally implemented in PyTorch. 
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Variant effect prediction and model interpretation plugins 

Additional domain-specific functionality of models can be implemented in the form of            

additional python packages - Kipoi plugins. We implemented two plugins: variant effect            

prediction (https://github.com/kipoi/kipoi-veff) based on in-silico mutagenesis and model        

interpretation using feature importance scores (https://github.com/kipoi/kipoi-interpret).  

Dependency installation 

Model and the data-loader can specify dependencies installable either by the Conda            

package manager (https://conda.io) or the `pip` (https://pypi.org/project/pip/) package        

manager. Thanks to the open source efforts like conda-forge (https://conda-forge.org/) or           

Bioconda (https://bioconda.github.io/), the Conda package manager covers a large set of           

dependencies including all major bioinformatics packages. Since Conda is a package           

manager for any programming language, not just python, it is easy to integrate models that               

are implemented in another language and only expose a command-line interface. One such             

example is lsgkm-SVM which is precompiled and distributed through the bioconda channel.            

One example Kipoi model built on top of lsgkm-SVM is lsgkm-SVM/Tfbs/Ctcf/K562/Uw_Std.           

The main strength of Conda is that it can create virtual environments. This allows the user to                 

create multiple environments for different models. For the definition of computation pipelines            

we recommend using Kipoi’s command line interface and virtual environment creation with            

Snakemake44. This allows to calculate model predictions for different models using a single             

generic snakemake rule while the model predictions get executed in isolated environments. 

Models 

pwm_HOCOMOCO 

Position weight matrices (PWM) for all 600 human transcription factors in HOCOMOCO v10             

were downloaded from   

http://hocomoco10.autosome.ru/final_bundle/HUMAN/mono/HOCOMOCOv10_pcms_HUMA

N_mono.txt and transformed to position specific scoring matrices (PSSM) using the           

pseudocount probability of 0.001. Scanning the DNA sequences using the PSSM matrix is             

implemented as a Keras model consisting of a single convolutional layer with one filter              

whose weights are set to the PSSM, followed by global max pooling. The model operates on                

one-hot-encoded DNA sequence. 
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DeepBind 

Original weights and architecture were obtained from supplementary material of the original            

publication5 and were converted to Keras 2.0 models (code:         

https://github.com/kundajelab/DeepBindToKeras). 

DeepSEA 

The DeepSEA model was converted from the original Torch7 model6 to a PyTorch model              

using a modified version of the script https://github.com/clcarwin/convert_torch_to_pytorch.        

Since prediction of model tasks and variant effect prediction use different handling of             

reverse-complement sequences there are two models in the Kipoi model zoo dedicated to             

the two different used cases in order to replicate results from the original model exactly.               

Implementations of reverse-complement handling were taken from .lua files provided in the            

software package in the publication6. Predictions of the models and variant effects produced             

by the models in the Kipoi repository match the predictions produced by the website              

http://deepsea.princeton.edu/job/analysis/create/. 

FactorNet 

FactorNet models were obtained from https://github.com/uci-cbcl/FactorNet. In addition to         

the models available in the github repository, Daniel Quang kindly provided the trained             

models for CEBPB and MAFK, which were part of the internal evaluation round in the               

ENCODE-DREAM in vivo transcription factor binding prediction challenge        

(http://synapse.org/encode). The models were converted to Keras 2.0 supporting the          

tensorflow backend. 

MaxEntScan 

We used MaxEntScan implemented in the maxentpy package        

(https://github.com/kepbod/maxentpy) provided through the Bioconda channel. We       

implemented a data-loader that takes the reference genome FASTA file and the genome             

annotation GTF file as input and returns sequences of all regions [-3nt,5nt] w.r.t. the              

annotated 5’ splice sites for the 5’ model and sequences of all regions [-3nt,20nt] w.r.t. the                

annotated 3’ splice sites for the 3’ model. 
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HAL 

The HAL model was adapted from https://github.com/Alex-Rosenberg/cell-2015 by        

implementing the identical 5’ splice-site scoring function into a Kipoi’s model class with the              

`predict_on_batch` function. Model weights were obtained from the same repository and           

directly applied. We implemented a data-loader that takes the reference genome FASTA file             

and the genome annotation GTF file as inputs and returns k-mer counts of sequences from               

all regions [-80nt, 80nt] w.r.t. the annotated 5’ splice sites. 

Labranchor 

The Labranchor model was obtained from https://github.com/jpaggi/labranchor. The Keras         

model implementation provided by the authors could directly be used for the Kipoi model.              

We implemented a data-loader that takes the reference genome FASTA file and the genome              

annotation GTF file as inputs and returns one-hot-encoded sequences of all regions [-70, 0]              

nt relative to the annotated 3’ splice sites. 

Benchmarking transcription factor binding prediction models 

The complete Snakefile for the analysis described in this section is available at 

https://github.com/kipoi/manuscript/blob/master/src/tf-binding/Snakefile.  

Data and prediction command 

The test set for transcription factor binding models was generated using 101bp contiguous             

intervals throughout chromosome 8 in the human genome assembly hg19. Each interval was             

labeled based on majority overlap with transcription factor ChIP-seq high-confidence peaks           

(IDR<0.05) from the ENCODE-DREAM in-vivo transcription factor binding site prediction          

challenge (http://synapse.org/encode). Intervals in the hg19 blacklist regions        

(https://www.encodeproject.org/annotations/ENCSR636HFF/) were removed. CEBPB was     

evaluated in the HeLa-S3 (ENCFF002CSA), JUND in HepG2 (ENCSR000EEI), MAFK in           

K562 (ENCFF812QPN) and NANOG in H1-hESC (ENCFF379EPK) cell type. The additional           

files required by FactorNet (like the DNase accessibility track) were obtained from the URLs              

listed in https://github.com/uci-cbcl/FactorNet/tree/master/data#bigwig-files. For models that      

require sequence lengths of more than 101 bp, we increased the size of labeled intervals.               

For example, to provide 1002 bp intervals for FactorNet, we subtracted 450 bp from start               

coordinates and added 451 bp to end coordinates. All model predictions were obtained by              

running the `kipoi predict` command in the individual conda environment for each model. 
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Accessible-only regions (Supp. Figure 1) 
In addition to chromosome-wide evaluation, the auPRC was computed only for regions            

overlapping DNase-seq signal peak regions in the corresponding cell-type by more than            

50%. DNase-seq peaks were obtained from the relaxed peaks provided by the            

ENCODE-DREAM in-vivo transcription factor binding challenge (http://synapse.org/encode). 

lsgkm-SVM training 

lsgkm-SVM from Bioconda (bioconda::ls-gkm=0.0.1) was used for model training and          

prediction. The model was retrained on ENCODE datasets using files downloaded from the             

same source as mentioned in the publication45. Preprocessing of training was performed            

using the gkmSVM R-package using default parameters `genNullSeqs(..., nMaxTrials=20,         

xfold=1, genomeVersion='hg19',..)`. For training the 322 datasets with the most peaks were            

chosen, similar to the lsgkm-SVM publication. Training was performed with the parameters            

`gkmtrain -l 11 -d 3 -c 1 -T 16 -m 5120 -v 3`. For the final model chromosome 8 and 9 were                      

held out from training to enable model benchmarking comparable with the DeepSEA models.             

Trained models reached area under the receiver operating curve (auROC) similar to the             

original publication45: 

 auc_roc # peaks # peaks no ‘N’ # seqs test set 

count 322 322 322 322 

mean 0.953404 22698.54037 22698.13044 1854.341615 

std 0.037503 13498.66481 13498.63832 1210.277168 

min 0.802789 6067 6067 391 

25% 0.931123 11210.5 11210.5 861 

50% 0.970242 19397.5 19396 1424 

75% 0.981651 34510 34510 2877.75 

max 0.996428 71537 71535 6342 

 

Transfer learning 

Peak File Acquisition  

We downloaded DNase files for 431 biosamples (cell lines or tissues) from Roadmap             

(http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/) and ENCODE   
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(https://www.encodeproject.org/), and processed them separately to obtain a final dataset of           

binary labels (0/1) indicating chromatin accessibility in each interval of the combined            

accessibility region for each biosample. We processed the raw data as follows: The fastq              

files were aligned with BWA aln (v0.7.10), where all datasets were treated as single-end.              

Dynamic read trimming was set to 5, the seed length was 32, and 2 mismatches maximum                

were allowed in mapping. After mapping, reads were filtered to remove unmapped reads and              

mates, non-primary alignments, reads failing platform/vendor quality checks, and         

PCR/optical duplicates (-F 1804). Low quality reads (MAPQ < 30) were also removed.             

Duplicates were marked with Picard MarkDuplicates and removed. The final filtered file was             

converted to tagAlign format (BED 3+3) using bedtools’ `bamtobed`. Cross-correlation          

scores were obtained for each file using phantompeakqualtools (v1.1). 

 

All files with a cross-correlation quality tag below 0 were discarded. For the ENCODE data               

generated from the Stam Lab protocol, the datasets were trimmed to 36 bp and technical               

replicates were combined. After removing mitochondrial and ambiguously mapped reads,          

the reads were randomly subsampled to a total of 50 million reads per sample. For the                

ENCODE data generated from the Crawford Lab protocol, the same procedure as above             

was performed, except reads were trimmed to 20 bp due to the different library generation               

protocol. For the Roadmap data, which was all generated by the Stam Lab protocol, the               

same procedure as above was performed with trimming to 36 bp. Reads from multiple files               

were combined and subsampled to 50 million reads in case the total number of reads was                

more than 50 million. 

 

These trimmed, filtered, subsampled tagAlign files were then used to generate signal tracks             

and call peaks. Signal tracks and peaks were called with a loose threshold (p < 0.01) with                 

MACS2 to generate bigwig files (fold enrichment and p-value) and Narrow Peak files,             

respectively. To obtain final peak sets, we performed pseudoreplicate subsampling on the            

pooled reads across all replicates (taking all reads from the final tagAligns and splitting in               

half by random assignment to two replicates) and running IDR (v2.0.3) with a p-value              

threshold of <0.1 to get a consensus region set for each DNase experiment. 

Data Preprocessing  

We divided the genome into intervals of width 1000 bp using a stride of 200 bp. For each                  

interval, we use the hg19 reference genome to extract the DNA sequence and assign a               

binary label of 0 (negative) or 1 (positive) for each of the 431 biosamples if the central 200                  
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bp of the interval overlapped at least 50% of the accessibility IDR peak or if the accessibility                 

IDR peak overlapped at least 50% of the the central 200 bp of the interval. This resulted in                  

the 16,551,625 intervals and 431 binary labels per interval for each of the biosamples. We               

use data from chromosomes 1, 8, and 21 for testing, data from chromosome 9 for validation,                

and the remaining data for training the models.  

 

We selected 10 biosamples to benchmark our transfer learning procedure by performing            

hierarchical clustering and randomly selecting one biosample from each of the 10 clusters.             

Selected biosamples were: common myeloid progenitor, GM12878, Jurkat clone E61, K562,           

mesendoderm, mesenchymal stem cell, cardiac mesoderm, thymus, lung, and brain.  

Model Architecture 

We trained 3 types of models predicting chromatin accessibility given DNA sequence: one             

multi-task model with randomly initialized weights predicting accessibility for 421 cell-types,           

and two types of single-task models trained on the remaining 10 cell-types: a model with               

randomly initialized weights and a model with weights transferred from the multi-task model.             

All models were convolutional neural networks (CNN) with the BASSET32 architecture and            

were implemented in Keras version 1.2 using tensorflow-gpu version 1.0.0 backend. 

Transfer Learning  

We used the trained multi-task model and transferred the weights from all but the final               

classification layer to the transferred single-task architecture. We froze the weights of all             

layers but the final two, and replaced the final classification layer with a layer outputting a                

single prediction, instead of 421. 

Model Training and Evaluation  

Randomly initialized models were trained using a categorical or binary cross-entropy loss,            

batch size of 256, epoch size of 2,500,000 and the ADAM optimizer46 with a learning rate of                 

0.0003. Pre-trained models were fine-tuned using a batch size of 128, no restrictions on the               

epoch size and the default learning rate (0.001) using the ADAM optimizer. Early stopping              

monitoring auPRC on the validation set was used with patience of 4 epochs for models with                

randomly initialized weights and monitoring the validation cross-entropy loss with patience of            

1 epoch for models with transferred weights. Single-cell model and transferred single-cell            

model were evaluated on the same test set for a given biosample (chromosomes 1, 8 and                

21). For example in the GM12878 biosample, the test set contains 135,630 positives and              
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2,330,052 negatives, and the validation set contains 35,526 positives and 647,116           

negatives.  

Predicting the molecular effects of genetic variants using interpretation 

plugins 

The presented variants were selected from the ClinVar release from April 2018. The             

selection involved performing variant effect prediction for all variants in the DeepSEA model             

and selecting the variant with the strongest negative predicted effect in GATA2 model             

outputs respectively. Mutation maps centered on those two variants were generated using            

the mutation map commands displayed in Fig. 4d and implemented in the kipoi-veff plugin. 

Predicting pathogenic splice variants by combining models 

Data: ClinVar 

The ClinVar release from April 2018 based on the reference genome GRCh37 was used              

(ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar_20180429.vcf.gz). Only variants in    

the range [-40nt, 10nt] around the splicing acceptor or variants in the range [-10, 10] nt                

around the splice donor of a protein coding gene (ENSEMBL GRCh37 v75 annotation) were              

used. The positive set comprises of variants classified as “Pathogenic” (6,310 variants) and             

the negative set comprises of variants classified as “Benign” (4,405 variants). Variants            

causing a premature stop codon were discarded. Per-variant pathogenicity/conservation         

scores (‘CADD_raw', 'CADD_phred', 'phyloP46way_placental', 'phyloP46way_primate’) and      

the dbscSNV score were obtained by VEP38. Spidex scores were obtained from ANNOVAR             

(http://www.openbioinformatics.org/annovar/spidex_download_form.php).  

 

Features 

Kipoi features: For specific Kipoi models the following features were produced: 

- MaxEntScan/3prime, MaxEntScan/5prime, HAL 

- <model>_ref: Model prediction for the reference allele 

- <model>_alt: Model prediction for the alternative allele 

- Labranchor 

- labranchor_logit_ref: (optional) Model prediction on the for the reference allele 

on the logit scale 
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- labranchor_logit_alt: (optional) Model prediction on the for the alternative 

allele on the logit scale 

- All models 

- <model>_is_na: 1 if model prediction is unavailable for the variant and 0 

otherwise 

 

These features were obtained  by running the `kipoi veff score_variants` 

command on the variants table with `-s logit_ref logit_alt ref alt logit 
diff` formatted as a vcf file and then parsing the returned vcf files using 

`kipoi_veff.parsers.KipoiVCFParser`. 

 

dbscSNV features: 
- dbscSNV_rf_score' - dbscSNV random forest score obtained with VEP 

- 'dbscSNV_rf_score_isna - 1 if dbscSNV_rf_score' is unavailable for the variant and 0 

otherwise 

SPIDEX features: 
- dpsi_max_tissue',  the maximum mutation-induced change in percentage-spliced in 

(PSI) across 16 tissue 
- 'dpsi_max_tissue_isna', 1 if dpsi_max_tissue' is unavailable for the variant and 0 

otherwise 

- 'dpsi_zscore', z-score transformed dpsi_max_tissue 

- 'dpsi_zscore_isna, 1 if 'dpsi_zscore' is unavailable for the variant and 0 otherwise 

Conservation features: All obtained using VEP 

- CADD_raw, Combined Annotation–Dependent Depletion score as described in 47 
- CADD_phred, CADD phred-like rank score based on whole genome CADD raw 

scores 

- phyloP46way_placental, phyloP (phylogenetic p-values) conservation score based 

on the multiple alignments of 33 placental mammal genomes including human as 

described in 48. 

- phyloP46way_primate, phyloP (phylogenetic p-values) conservation score based on 

the multiple alignments of 10 primate genomes including human. 

 

NA values were zero-imputed and each feature was standardized to have mean of zero and 

variance of one. 
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Response variable: “ClinicalSignificance” was transformed into a binary classification         

variable with ‘Pathogenic’ corresponding to class 1 and  ‘Benign’ corresponding to class 0. 

Data: dbscSNV 

Table S2 from the supplementary material of 49 was used to train and evaluate models in a                 

10-fold cross validation (2959 variants, 1164 from the positive class). 

dbscSNV features (without conservation, described in 49) 

- 'PWM_ref', 'PWM_alt', 

- 'MES_ref', 'MES_alt',  

- 'NNSplice_ref', 'NNSplice_alt',  

- 'HSF_ref', 'HSF_alt',  

- 'GeneSplicer_ref', 'GeneSplicer_alt',  

- 'GENSCAN_ref', 'GENSCAN_alt',  

- 'NetGene2_ref', 'NetGene2_alt',  

- 'SplicePredictor_ref', 'SplicePredictor_alt 

Kipoi model, conservation and SPIDEX features were the same as for the ClinVar dataset. 

Response variable: “Group” variable in the original table -  ‘Positive’==1 and ‘Negative’==0. 

Meta-model and evaluation 

Logistic regression implemented in scikit-learn with default parameters was used to build the             

meta model using different feature subsets. 10-fold cross-validation was used (implemented           

in `sklearn.model_selection.cross_validate`) to evaluate models using the auROC metric. 

Code availability 

Kipoi, kipoi_veff, and kipoi_interpret are available as python packages on PyPI and their             
source code is available at https://github.com/kipoi/kipoi, https://github.com/kipoi/kipoi-veff       
and https://github.com/kipoi/kipoi-interpret correspondingly. Models are hosted at       
https://github.com/kipoi/models. Code to reproduce the results is available at         
https://github.com/kipoi/manuscript.  
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